by Gschneidner in terms of a considerable homogeneity region. In order to check this interpretation the X-ray powder diagrams of three arc-cast samples annealed at 800°C and containing slightly different relative amounts of La and Al were compared (Table 4). The first (20.0 at.% La) was Buschow's original diagram, which had served for his determination of the ' α -LaAl₄' lattice constants; besides the La₃Al₁₁ lines, there are also weak lines of Al. The second, corresponding to the exact stoichiometric composition (21.4 at. % La) shows no other lines than those of pure La_3Al_{11} , whereas the third (22.2 at.% La) also contains LaAl₃ lines. This proves not only that the homogeneity region is rather small but also that La_3Al_{11} is indeed the correct chemical formula. The invariance of the lattice constants tends to corroborate the former conclusion.

Since the high-temperature modification cannot be quenched (Buschow), one would think that all previous investigations, which were carried out at room temperature, would refer to the low-temperature phase. The question then arises why the orthorhombic structure had not earlier been recognized. Poor resolution of the X-ray diagrams might be held responsible, but such an explanation seems particularly unsatisfactory in the case of Rossi's work, which involves tetragonal Laue photographs of single-crystalline samples. We are inclined to believe, therefore, that the BaAl₄-type structure is stabilized by chemical impurities. Although this idea needs experimental verification, it should be noted that purer starting materials were available to us (La 99.9%, Al 99.99%) than to any of the previous investigators, and also that our method of sample preparation was probably less apt to introduce contamination.

Since it is impossible to quench the high-temperature modification, the α and the β phases are likely to have the same chemical composition, in which case they should be designated as α -La₃Al₁₁ and β -La₃Al₁₁. If so, and if Buschow's statement is correct that ' β -LaAl₄' has the BaAl₄-type structure, the phase transition entails the ordering of vacancies by diffusion. This conclusion is not necessarily at variance with the reported sharpness (Buschow, 1965*a*) of the transition.

The authors are greatly indebted to Mr A.I. Luteijn and Mr P. Hokkeling, who prepared the samples, and to Miss C. Kortleve and Mr J.I. Leenhouts who undertook the computational part of this work.

References

- BUSCHOW, K. H. J. (1965a). Philips Res. 20, Ref. 337.
- BUSCHOW, K. H. J. (1965b). J. Less-Common Metals, 9, 452.
- GAUME-MAHN, F. & COHEN, M. (1957). J. Recherches C.N.R.S. Labs. Bellevue (Paris), 38, 64.
- GSCHNEIDNER, K. A. (1961). Rare Earth Alloys, page 102. Princeton: Van Nostrand.
- IANDELLI, A. (1958). 16th International Congr. Pure Appl. Chem. (Paris 1957), (Inorg. Chem.), page 35. London: Butterworth's Scientific Publications.
- International Tables for X-Ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- NOWOTNY, H. (1942). Z. Metallk. 34, 22.
- Rossi, A. (1933). Atti Accad. naz. Lincei Rend., Classe sci. fis. mat. e nat. 17, 182.

Acta Cryst. (1967). 22, 501

Crystal and Molecular Structure of S,S-Dimethyl-N-methylsulphonylsulphilimine, (CH₃)₂SNSO₂CH₃

By Alajos Kálmán

Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest II, Pusztaszeri ut 57, Hungary

(Received 15 August 1966)

The crystal structure of S,S-dimethyl-N-methylsulphonylsulphilimine has been solved by threedimensional Patterson and Fourier calculations. The parameters have been refined by the aid of Booth's differential syntheses, with a final R = 0.106. The S-N distances $[1.58_1(10) \text{ and } 1.63_3(9) \text{ Å}]$ indicate a delocalized S-N-S d_{π} bond system. The S-N-S bond angle is $116\cdot2$ (6)°, the average S-O distance, 1.44_6 Å . The C(1)-S(VI) bond distance, 1.74_9 (12) is similar to other C(sp³)-S(VI) bonds. The C(sp³)-S(IV) bond distances [1.74 (7) and 1.74 (3) Å] are rather short, which can be explained only with the supposition of strong hyperconjugation. The large e.s.d.'s of the C(2)-S(IV) and C(3)-S(IV) bonds are due to the intensive thermal motion of the C(2) and C(3) atoms.

Introduction

The structure and the stereochemistry of the *N*-acrylsulphilimines have been investigated by Kucsman and his collaborators (Kucsman, 1953, 1958; Kucsman & Kapovits, 1964). These investigations gave interesting results concerning the bond system and the configuration of these compounds. Among others the presence of a strong S(IV)–N d_{π} bond in the N-sulphonylsulphilimines (RR'SNSO₂Q) has been proved by infrared spectroscopy (Kucsman, Ruff & Kapovits, 1966). It has not, however, been possible to draw any unambiguous conclusion concerning the character of the S(VI)-Nbond from spectroscopic data. Moreover, in the infrared spectrum of the sulphilimines containing an $S(IV)CH_3$ group an anomalous phenomenon was revealed, which was described as the 'S-methyl effect'.

To clear up this problem the complete structure determination of one of the sulphilimines $(R,R' \text{ and } Q = CH_3)$ has been performed, as a first step towards the systematic structure analysis of the sulphilimine derivatives.

Experimental

The crystals of the compound were prepared by the method of Schulz & Kresze (1963) and were recrystallized from a mixture of absolute benzene and alcohol. According to the infrared spectrum the colourless needle-like crystals are free from mother liquor impurities. The m.p. ($122^{\circ}C$) is in good agreement with the literature data.

Crystal data

C₃H₉NO₂S₂, $M = 155 \cdot 25$ $a = 5 \cdot 80_5 \pm 0.012$, $b = 13 \cdot 50_3 \pm 0.009$, $c = 9 \cdot 21_3 \pm 0.012$ Å $\beta = 105 \cdot 15 \pm 0.13^{\circ}$, $V = 697 \cdot 07$ Å³, Z = 4, $D_x = 1 \cdot 479$ g.cm⁻³ $D_m = 1 \cdot 47_3$ g.cm⁻³ (by flotation). $\mu = 60$ cm⁻¹ (Cu K α), $F_{000} = 328$, Space group $P2_1/c$ (from systematic absences).

The lattice parameters were determined by the precession camera, calibrated with sodium chloride. The intensities were measured by a Zeiss fast photometer on integrated, equi-inclination Weissenberg photographs, taken with Ni-filtered Cu K α radiation, using the multiple-film technique. The dimensions of the crystals investigated were reduced by our preparation device (Kálmán & Argay, 1965) below the value of $\mu R=0.4$, and in this way the absorption correction could be neglected. Unfortunately the crystals slowly decomposed during the long X-ray irradiation. Therefore the investigated samples were changed after every second layer. It was hoped that the probable effect of this phenomenon upon the values of the intensities would be diminished by collection of data from repeated photographs, made around the three crystal axes, and controlling them by each other.

Photographs were taken from the following layers:

The spot shape correction on the non-equatorial layers and the multiple-film scaling were taken by hand calculations, measuring the intensities on both upper and lower parts of the films. Then the intensities were corrected for the Lp factor by a National Elliott 803B computer, using the program of Sasvári & Sánta (1964). After the interlayer scaling, made by hand, the absolute scale and the approximate temperature factors (\bar{B} = 3.63 Å²) were determined by Wilson's method. In this way 1264 independent reflexions (81% of the possible ones) were collected. For the structure determination and refinement the 1027 non-zero reflexions were used.

Structure analysis and refinement

The interpretation of the 3-D Patterson calculation using the 'satellite and rotation vector's relations' (Buerger, 1959) gave unambiguously all sulphur-sulphur vectors. The (u, v, w) Patterson coordinates were transformed to the (x, y, z) Fourier ones by the aid of the shortest vector, the absolute value of which was in good agreement with the estimated intramolecular $S \cdots S$ distance. The first 3-D Fourier synthesis was performed with the phases appropriate to the sulphur atoms. Three successive rounds of structure factor and Fourier calculations gave the positional parameters of all the atoms; R was now 0.231.

The refinement was carried out with twelve cycles of Booth's differential synthesis (1948), two with the average, two with atomic isotropic and eight with anisotropic thermal parameters. The latter were calculated by the method of Nardelli & Fava (1960), using the

* These intensities were used only to control the same ones collected from other layers.

Table 1. Final positional (monoclinic*) parameters with their standard deviations

	x	У	z	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
S(1)	0.1301	0.1175	0.2137	0.0004	0.0001	0.0003
S(2)	0.1640	-0.0785	0.2886	0.0005	0.0001	0.0003
O(1)	0.1705	0.2100	0.2936	0.0021	0.0006	0.0012
O(2)	-0.1120	0.0963	0.1313	0.0017	0.0007	0.0013
N	0.2509	0.0353	0.3312	0.0017	0.0006	0.0012
C (1)	0.2913	0.1206	0.0777	0.0020	0.0006	0.0012
C(2)	0.4055	-0.1399	0.2515	0.0144!	0.0019	0.00681
C(3)	0.1800	-0.1305	0.4639	0.0039!	0.0009	0.0039!

* For the calculation of the clinographical projections (Figs. 1 and 2) the orthogonalized parameters were used. The transformation matrix from monoclinic to orthogonal coordinates was:

$$\left(\begin{array}{rrrr}
1 & 0 & \cos\beta \\
0 & 1 & 0 \\
0 & 0 & \sin\beta
\end{array}\right)$$

second derivatives of the electron densities from the differential syntheses. In view of the uncertainty in deriving the correct scale factors, the anisotropic thermal parameters, given in Table 2 have only limited physical meaning.

Because of the anomalous differences in ρ values of the carbon atoms, a 3-D (F_o-F_c) synthesis was performed to verify the positional parameters of the C(2)and C(3) atoms. The result of the difference synthesis confirmed the coordinates of these atoms, obtained from the third 3-D Fourier synthesis. To find the reason of the difference in ρ values of the carbon atoms, the (x,y) and (x,z) projections of their electron densities were drawn, on the basis of the third 3-D Fourier cycle. These projections using an arbitrary limit of the electron density ($\rho_0 \ge 3 \text{ e.Å}^{-3}$) show that while C(1) has an almost spherical electron cloud, C(3)and especially C(2) have unusually deformed elliptical ones. The estimated volumes of these electron clouds are inversely proportional to the electron densities found in the atomic centres. These results are consistent with each other and with the unusually great thermal parameters of the C(2) and C(3) atoms.

After the seventh cycle of the refinement a correction of the accidental errors and of the effect of the secondary extinction upon the intensities was performed. Twenty reflexions in the centre of the reciprocal lattice $(\sin^2\theta/\lambda^2 \le 0.03)$ were corrected by the method of Pinnock, Taylor & Lipson (1956).

The final coordinates with their e.s.d.'s (Cruickshank, 1949) are given in Table 1. In Table 3 are listed the observed and calculated values of the electron density and the second derivatives at the atomic peaks with e.s.d.'s. The determination of the hydrogen coordinates was not attempted, because of the great thermal motion of the methyl groups. The final reliability indices, R (for the observed reflexions only) and R' (including the

Table 2. Anisotropic thermal parameters (Å²)

The parameters are values of B_{ij} in the expression:

$\exp\left[-\frac{1}{4}(B_{11}a^{*2}h^2 + B_{22}b^{*2}k^2 + B_{33}c^{*2}l^2\right]$														
$+2B_{23}b^*c^*kl+2B_{13}a^*c^*hl+2B_{12}a^*b^*$														
	B_{11}	B_{22}	B_{33}	B ₂₃	B_{13}	B_{12}								
S(1)	2.93	2.47	2.93	0.01	1.28	0.12								
S(2)	4.64	2.80	2.96	-0.18	0.42	0.33								
O(1)	8.89	2.75	4.64	-0.08	3.38	-0.22								
O(2)	2.88	4.40	6.90	1.70	1.22	0.60								
N	4.15	3.13	3.21	0.50	0.89	-0.23								
C(1)	3.96	4.34	3.76	0.08	1.75	-0.33								
C(2)	16.20	6.25	9.67	1.05	9.05	4.17								
C(3)	6.98	3.41	4·25	-0.05	1.77	-0.32								

non-observed ones, using $F_o = 0.5F_{\min}$, when $F_c \ge F_{\min}$) are 0.106 and 0.128, respectively.

The scattering factors used throughout the calculations were those of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for oxygen, nitrogen and carbon, and of Dawson (1960) for sulphur. The calculations were performed on the Olivetti Elea 6001/S computer of the Centro di Calcolo Elettronico of the University of Parma, using the programs of Nardelli, Musatti, Domiano & Andreetti (1964, 1965).

Discussion

The atomic distances and angles are given in Table 4. The e.s.d.'s are calculated by the formula of Ahmed & Cruickshank (1953) for distances and from those of Darlow (1960) for angles. The clinographic projections of the molecule are shown in Figs. 1 and 2.

The sulphur atoms with different valence states [S(IV) and S(VI)] are linked by an sp^2 -nitrogen atom, which is able to establish π -connexions. The S-N distances (1.58₁ and 1.63₃ Å) indicate that a delocalized d_{π} bond system is formed on the S-N-S atoms with strong d_{π} bonds. The deviation between them is signi-

Table 3. Comparison of peak heights ($e.Å^{-3}$) and curvatures ($e.Å^{-5}$) from the differential synthesis

		Q	$-A_{hh}$	$-A_{kk}$	$-A_{ll}$	Ank	Anı	Akı
S(1)	obs.	31.0	309	308	245	4	79	-15
	calc.	30.9	308	308	245	4	78	-14
S(2)	obs.	26.7	226	264	209	11	40	-18
	calc.	26.7	227	264	208	11	40	-18
O(1)	obs.	8.8	55	70	57	-2	12	18
	calc.	8.8	57	70	57	-3	12	19
O(2)	obs.	8.7	83	58	60	-2	25	1
	calc.	8.7	82	58	60	-2	25	1
Ν	obs.	8.5	67	60	56	-3	13	0
	calc.	8.6	67	60	56	-3	13	0
C(1)	obs.	7.4	61	66	59	1	16	-2
	calc.	7.3	61	67	59	1	16	-1
C(2)	obs.	4∙0	16	34	19	8	10	-5
	calc.	3.9	16	33	19	8	10	-6
C(3)	obs.	5.7	39	46	18	-7	8	1
	calc.	5.6	39	46	19	- 8	8	2
	e.s.d.	0.2	2	3	2	1	1	1

ficant according to the significance test of Cruickshank & Robertson (1953):

504

$$t_0 = (l_1 - l_2)(\sigma_1^2 + \sigma_2^2)^{-\frac{1}{2}} = 3.54$$
,

but can be explained on the basis of the different atomic radii and electronegativities of the S(IV) and S(VI) atoms (Truter, 1962*b*).

The S–O distances $[1.43_8 \text{ and } 1.45_5 \text{ Å}]$ indicate strong bonds comparable to those found in other sulphones and sulphonamides. The C(1)–S(VI) bond, 1.74₉ Å, is not significantly shorter ($t_{0, \text{max}} = 1.64$) than other C(sp^3)–S(VI) bonds, *e.g.*

 $\begin{array}{cccc} 1\cdot770\pm0\cdot009 \ \text{\AA in } (CH_{3}SO_{2})_{2}C=C=NCH_{3} \\ & (Wheatley, 1954) \\ 1\cdot761\pm0\cdot01 & (CH_{3}SO_{2})(C_{6}H_{5}SO_{2})C=C=NCH_{3} \\ & (Bullough \& Wheatley, 1957) \\ 1\cdot770\pm0\cdot007 & K_{2}CH_{2}(SO_{3})_{2} \\ & (Truter, 1962a). \end{array}$

The C(2)-S(IV) and C(3)-S(IV) bonds are considerably shorter than the theoretically calculated $C(sp^3)$ -S(IV) or the one found, for example, in rongalite, 1.83 ± 0.01 Å (Truter, 1962b). These unusually short distances, though their standard deviations are rather high, seem to originate from a hyperconjugation-like effect. This question nevertheless needs the thermal motion analysis of atoms as well as of the molecule, and this could not be performed at present because of lack of computer facilities. At any rate, the 'S-methyl effect' mentioned above should clearly be associated with the shortening of the $C(sp^3)-S(IV)$ bond lengths and the intensive thermal motion of the methyl groups. The thermal vibration of the C(2) is considerably greater than that of C(3), for which, however, an unambiguous explanation could not be found.

Another remarkable fact is that the standard deviations of the S-O bond lengths are not influenced as significantly by the great thermal motion of the oxygen atoms as that of the C-S(IV) bond lengths by that of the carbon atoms.

The S(IV)-N-S(VI) bond angle, 116.2°, is less than the theoretical 120°. The lone electron pair of the nitrogen, which does not take part in the S-N-S delocalized d_{π} system, presumably displays a repulsion effect upon the S-N bonds, and therefore the bond angle decreases. The O(1)-S(VI)-O(2), O(1)-S(VI)-C(1) and O(2)-S(VI)-C(1) bond angles are similar to the corresponding ones in the CH₃SO₂ groups of other compounds investigated (Wheatley, 1954; Bullough & Wheatley, 1957). The O(2)–S(VI)–N angle is considerably greater than the O(1)–S(VI)–N angle and those found in potassium imidodisulphate (Cruickshank & Jones, 1963) in the dinitrososulphite and sulphamate ions (Jeffrey & Stadler, 1951). The bond angles of the

Fig.1. The atomic distances and labelling of the atoms in sulphilimine.

Fig. 2. The bond angles and labelling of the atoms in sulphilimine.

Table 4. Interatomic distances and bond angles with their e.s.d.'s

$\begin{array}{l} S(VI)-O(1) \\ S(VI)-O(2) \\ S(VI)-N \\ S(VI)-C(1) \\ S(IV)-N \\ S(IV)-C(2) \\ S(IV)-C(3) \\ S\cdots S \end{array}$	$\begin{array}{c} 1\cdot438\pm0\cdot009\ \text{\AA}\\ 1\cdot455\pm0\cdot012\\ 1\cdot581\pm0\cdot010\\ 1\cdot749\pm0\cdot012\\ 1\cdot633\pm0\cdot009\\ 1\cdot74\pm0\cdot07\\ 1\cdot74\pm0\cdot03\\ 2\cdot729\pm0\cdot003\\ \end{array}$	$\begin{array}{c} S(VI)-N-S(IV)\\ O(1)-S(VI)-O(2)\\ O(1)-S(VI)-N\\ O(1)-S(VI)-C(1)\\ O(2)-S(VI)-C(1)\\ N-S(VI)-C(1)\\ N-S(VI)-C(1)\\ N-S(IV)-C(2)\\ N-S(IV)-C(3)\\ C(2)\\ S(IV)-C(3)\\ C(2)\\ \end{array}$	$116 \cdot 2 \pm 0 \cdot 6^{\circ}$ $116 \cdot 4 \pm 0 \cdot 6$ $106 \cdot 0 \pm 0 \cdot 6$ $107 \cdot 4 \pm 0 \cdot 6$ $114 \cdot 7 \pm 0 \cdot 6$ $105 \cdot 3 \pm 0 \cdot 6$ $106 \cdot 4 \pm 0 \cdot 5$ $106 \cdot 4 \pm 1 \cdot 7$ $102 \cdot 6 \pm 0 \cdot 7$
		C(2)-S(IV)-C(3)	98.0 ± 1.9

 $CH_3S(IV)$ -N group can be compared with those of dimethyl sulphoxide (Thomas, Shoemaker & Eriks, 1966) which has a similar electron structure:

	Sulphil-		Sulph-
	imine		oxide
C(2)-S(IV)-C(3)	98∙0°	C(1)-S(IV)-C(2)	98·2°
C(2)-S(IV)-N	106.4	C(1)-S(IV)-O	106.7
C(3)-S(IV)-N	102.6	C(2)-S(IV)-O	107.5

As has been emphasized throughout this paper, some atoms of the molecule had unusually great thermal vibrations. This question suggests that the structure should be reinvestigated and refined with more accurate intensities collected at low temperature, as suggested by Cruickshank (1960) and Jensen (1962) in such cases. The observed slow decomposition of the crystals during X-ray irradiation may also be connected with the great thermal motion of the structure. Perhaps an electron spin resonance study of the irradiated crystals will give some information concerning this phenomenon.

The conformation of the molecule from the organic chemical aspect will be discussed elsewhere (Kucsman, Kálmán & Kapovits, 1966).

The author would like to express his sincere thanks to Prof. L.Cavalca and Prof. M.Nardelli for their kindness in providing facilities for work in their laboratories and for much help during the work, as well as to Dr Á.Kucsman and Dr I.Kapovits for the sug-

Table 5. *Observed and calculated structure factors* Unobserved reflexions are marked by a dot.

h	ĸ	1 10F _o	10Fc	hk	1 1CF.	10Fc	h ƙ	1 10F.	1CFc	'n	k	1 1070	10Fc	h k	1 10	7 ₀	1CF _c	h	k	1 10	? ₀	107 _c
123456123	0	0 960 610 671 337 113 76 151 107 67	909 -630 -689 -362 -103 -149 -91 -91	2~~~+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 530 76 50 107 239 71 225 56 98	5754585543549 - 2553549	-122334455	1 160 191 162 110 110 110 11 12 10 110	174 -179 146 -101 91 -27 -37 -31 -121	455000 - 1 N	2	2 25 13. 13. 35 13. 724 488 212 71	25 -12 -26 -723 -515 219 68	5 10 -5 11 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	2 2 3 2 3	8. 43. 702 052 698	7 -11 249 312 331 52 91	17374 7550	5	3 24 1 2 2 1	12.	-30 383 -204 106 4 -197 41 -231 -118
4560120	2	62 11, 76 429 158 145 98	-57 17 69 415 155 -162 -115	112233	509 680 116 25 124 148 8	-564 -656 125 -25 -91 116 -7	0 10 -1 -2 -3	56 464 278 222 158 195 203	-02 -479 -291 217 141 -193 216	20074 2000		110 297 193 260 143 80 107	-89 304 -206 264 -131 64 -74	4 	1	43 41 48 398 13	-149 -142 -173 99 -173	- Halanda	6	3	44308080	-73 -340 -1 -105 -126 132 -186
45612345	3	40 50 67 305 335 80 181	-90 -11 12 309 361 73 -185	+4556401	102 141 195 156 91 255 119 257	-125 205 -148 -28 -122 273	-9 4 -4 11 -1 -2	254 110 164 50 67 12. 12	-207 120 -169 44 64 -23 -22	ספסיקמקא	4	13. 259 325 52 76 226	-05 -23 301 321 48 212 -251	-2334401		2471 5676 4303.	-53 -55 -44 -36 -28	* 3 5 5 6 0 - 1	7	33	1925197924	-128 31 12 93 -340 -362
76012345	4	62 1036 337 307 307 303 127	-1047 -383 -55 310 311 124	1220004	273 199 121 113 215 50	-278 222 -135 99 -219 -28 36	-23 -34 -4 0 12 1	11. 11. 10. 11. 231 84 121	-4 -35 -29 -217 -68 114	>>>+ + + + + + + + + + + + + + + + + +		181 171 300 62 87 10.	-126 -176 -301 -49 -75 1	-1 -2 -3 -3 -3 -3 -3 -3 -3 -3 -1 -2 -3 -3 -1 -2 -2 -3 -1 -2 -3 -1 -2 -3 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 -4 -1 -2 -3 		13. 91 84 11. 57 50		122000445		32 1 1	17.1222.391	-31 333 208 134 134 19
6125456	5	67 121 281 119 50 143 71	-49 111 297 122 -45 -138 -71	55664 -01 -1	56 170 35 91 204 138 176	-44 158 -46 84 218 166 -184	2 -2 -3 -3 -4 -4 0 13	76 12 67 91 50 80 62	61 -26 85 -99 60 -87 -58	Muture.	5	203 177 224 362 303 76 87	201 -167 -179 -393 -266 -60 -101	1122370 15		62 12. 91 43 56 10.	61796023	whoted	8	11	50672277. 19	-38 47 -85 -173 -194 -19 -19
01234561	6	505 345 292 188 43 50	-540 -368 303 194 -57 -50	ณ _์ มพุทสุ มกุษ	127 121 193 224 84 107 67	-118 99 -201 233 87 108 -64 67	1 -12 -3 -3 -4	11. 67 11. 62 10. 62	-1 -62 41 -29 61 -15 74	4455660-	6	124 80 71 188 9, 71 330	124 77 74 176 7 72 339	1 -12 -23 -30 -01 16	1	01 248 32 46 97	-112 -138 -132 -148 -46 -68 -20 -85	n+ + ~~~~	9	1	10	89 31 36 39 -199
12345601	8	71 35 116 62 80 56 204 56	-73 -68 199 52	-01-1223	87 219 141 295 260 209 107	-89 -235 168 -328 280 -214 99	0 14 -1 -2 -3 -3	182 143 67 10 67 76 101	-19 179 146 -61 -22 76 -90 111	17220004 4		245 248 84 274 235 67 199	391 -253 84 -272 -191 -63 -173	-1 0 17 0 1 -1 -1 -2	3 1 5 2 6	97 87 98 98 12 85	-55 -43 257 -561 -720	172200044		2 2 1 2	18 18 18 18 18 18 18	-201 170 -162 190 -17 72 125
2345612	9	87 25 116 113 10 290 261	46 -12 -103 -112 -19 -227 -251	34455660	124 67 141 76 225 43 104	-126 -57 142 -75 239 -50 107	4 -4 -1 -1 -2 -2	35 76 43 10 56	-70 -299 -2992 -8562 -64	אליסלסילט	7	67 50 67 56 426 129 243	59 -40 57 447 135 -215	33445566	1 2 2 2	79 47 19. 86 87 69	155 -226 320 -50 279 -36		10	1 3131	2717765777	115 60 304 -351 -85 -85
74560125	10	29 62 80 43 250 196 10 150	52 81 57 222 186 -1 -133	-12233	495 495 110 176 67 203	514 22 118 -194 -211	-3 0 16 -1 -2 -2 0 17 0 0	43 156 80 35 35 43 2 1215	51 162 -92 -42 27 42 42 -1228	42334455		270 62 228 12. 67 110 11. 177	-23 -41 -223 -17 -64 98 6 168	20-1-122200	1		-137 207 -170 234 120 36 247	104 4 50 1 1	11	3	70 74 16. 71 79 19.	-73 -73 -229 -18 51 110 -24
4 512345	11	124 62 355 267 50 76 84	-130 -56 -365 -267 -42 74 104	4556601	206 98 107 56 91 172	210 -98 99 -61 64 154	1122334	60 795 406 220 370 505 182	-82 -918 440 -180 400 546 157	horrooo	8	6 67 236 226 254 50	40 71 30 -210 191 -244 -24	4455660	1 1 1 3	6035466773	-132 23 -131 -93 -59 -59 309	220004400		1	76 07 76 30 76 30 76 30 76 30 76 30 76 30 76 30 76 30 76 30 76 30 76 30 77 76	449 -767 -457 -351
01234512	12	162 12, 11, 59, 43 71	-145 -27 35 13 52 67	12235445	154 121 209 119 94 127 110	-146 117 -219 -82 76 -116 115 -34	-4 556601	421 25 62 71 127 420 6. 328	445 21 354 -112 -112 -408 -11	33445501	9	13. 43 110 94 116 43 113 265	-15 15 112 90 121 32 106 262		22	2543503196	29 260 -214 39 -184 -185 -26 -29	סרקמקווייי	15	1	10248.	91 -53 -11 -280 -30
45401254	14	104 50 7. 14. 10. 43 43	36 26 -27 -33 -44	-5668 -0112	111 55 8, 56 104 10, 80	252 538 730 	-22233445	289 345 185 62 94 182 12	293 362 172 -44 95 -163 12	172200747		177 179 302 71 62 94	160 179 287 -39 57 -100 -77	-5 -5 -6 -6 -6 -1 -1	1 3 3	135 1450 762 7256	-118 -118 -57 -357 -35 380	40-1-22	13	1	50 54 57 57 57 57 57 57 57 57 57 57 57 57 57	-33 -151
1230121	15 16 17	166 143 50 35 62	169 156 60 47 27 . 1 79	2334455	115 11. 67 94 50 62	-127 -33 -52 -82 -58 68	-5600 2 -01120	143 62 43 194 104 289 145	-144 -57 -44 -179 103 -280 153	ייים ביומעי	10	71 94 166 139 143 67 50	64 93 155 118 151 151 31	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	596 736 726 204 70	274 71 188 -174 -35 -184 -98	n44011≈	14	1111	87 87 52 27 14	-63 -90 -141 -91 115 6
0 -1 -2	1	1 38 876 1072 294	-10 -894 1030 326	-6 0 9	6. 8. 116 104	-19 21 111 -88	-233-34	43 71 148 13	26 55 125 7	ク -34 -4		143 107 67 84	198 91 69 95	-> -6 -6 5	1	04 11. 71 55	-69 -35 46 306	-2334		1	50 34 50 21	-151 -118

Table 5 (cont.)

h k	t	1 107 ₀	10Fc	h k	1 10F ₀	107 _c	h k	1 10F ₀	102 c	1. 3	1 1070	1c7 ₀	h li	1 1020	.cr _e	3. k	1 1.	Fo ^{1Cr} c
0 15	;	3 15. 67	12 42	-2 8 3	4 230	-270 39	-/1 /1 5	5 152 67	151 81	- <u>3</u> c	0 50 121	- 55 - 72	-5 10 Ç 1.	6 10. 14.	, 		ö	5. 22 43 -30
2	_	43 14.	30 -8	-24	76 56	-123	-> 6 0 5	43 25	-20	4	267	-54 256	-12	15. 71 12.	61	-6 5		12. 15 506 502
0 16 1 -1	5	91 56 87	-97 -42 67	-50 0	37 101 132	-103 93 -152	-1 2	154 527 113	-308 100	222	25 179	4 130	-23-33	76 9. 13.	11	-1	1	170 133 179149 15290
00)	4 406 154 482	400 -121 492	-1 -2	62 25 204	-55 22 -203	-23-55	226 35 25	-208 30 -5	C 1 1 -1	217 84 156	-202 -79 142	-9 10	62 101 13.	-31 -110 -i	-255		139 86 116 -115 247 256
22.2		84 127 80	-53 -84	-3 -3	35 80 23	41 -60 28	4 -4 5	11 104 8	· 11 109	23	10 127 145	125	_1 _1	9 1 126 99	101 -114 123	5 5	1	198 195 87 57 76 -93
-3		501 94	-548 -65		76 3	66 12	-5	110 53	116 92	4	80 91	-87 -84	-2	107 56	-113	04		43 40 54 -59
5		129	118	-6 10	25	24 55	-1	215 189	158 185	-50	44 13	-57	0 13 1	12. 10.	13	-22		67 -)0 145 130
-6 0	L	148 62	156	-122	50 17	· -21	12121	374 67	376 57	-1	12.	18 -24	423	12.	22	-54		75 1221 12132
-1		141 84 393	-163 -69	-3	15 80	-20	44	1G 71	-21	12107	50 15	-57 -20	0 14	10. 76	-22 106 -122	-0 5		94 -80 43 41 43 43
33		210 50	-208 23	_4 5 11	16 23	. 30 -9	-5	62 62 327	-54 -84 322	4	13. 80	-13 67	-2 -1 15	113 50 7 43	-122 -63	0708	:	121 -121 149 62 -35
5		158	146	-1	91 160	-93 -170	1 -1	207	177	-5-0-3	15 35	-39	-1	, 62 127 76	-63 122	0 10 0 11	ú	1122 10. 16
-6		16.	56	-23	259 50	-278	-2.3	154	-153	1 -1	212 279	-195	1200	30 50	30 -40	-		98 104 90 -83
-1 '	2	124 160	-110 133	-24	10 127	-20 135		110	-113	-23	148	-136		14.	-110	10.01	:	104 -107 43 29
-2		62 16	-20 30	0 12	35 121	-38 -130	-5-6	15	16 49	-24	134 152	-225 125 -155		35	26			25 -32 114
-24 -4		17.	-108 -41	-2	158 136	-181 139	-1	113 194	114 182	-50	45	-50	-1	256	291 231	-0 2 1		35 46 121 -128
-5		17.	20 29 13	-34	136 13	140	-23	215	198	-1	141	87 -155	100	50 182	170	-2		94 -127 170 -164
0	3	426 336	34 414 370	0 13	62 15	-69 50	-24	22	-61	-2-2-2	278 87	-267 82	-4 -5	25 35 156	-51 -36 -156	-3-4		110 -78 101 89
-1 -2 -2		227 94 80	-232 -85 -88	-2	15 13	· -31 · -14 · 37	09	132 132	-67 124 7		145 13 35	-157 - 34 -33	03	105 105 55	-178 93 39	-7 0 3 1		43 -43 2272
-3 -4		350 226 242	-378 215 -236	-3 0 14	16 25 71	-20 17 56	-1 -2 -2	228 71 110	-73 101	-5	25 84 121		-12	104 23. 116	-80	-42		1727 22. 28 3. 23
-4 5 -5		179 25 67	175 9 50	-1 2	91 87 94	-68 87 -128	-3 -3	76	-114 -77 -77	-1 -1	80 170	-73 -160	-34	21. 84 15.	-53	-24		110 75 132 108 17. 1
-6 0 ·	4	25 243 219	-241 -218	-2 3 0 15	80 19 12	83 30 -16	-5 10	62 101	-114 -64 -78	-23	14 91 50	-14 -81 34	-5	101 43 17.	-67 -33 16	-1 -1		84 -75 94 -139 84 -92
-1 -2 -2		110 116 317	136 -120 298	-1 -2	43 104 62	52 99 42	-1	158	153 153	-24	104 25 50	-16 48	-1 -1	215 260	223 229	-34		6. 41 1457 12. 33
3 -3 4		43 260 71	52 245 86	-2 0 16 0 1	80 80 5 250	105 56 -243	-2	35 16 160	-24 -11 -153	-5 0 6	50 62 84	52 39 -69	-2	156 226 15.	174 209 -3	-5 5		84 69 2022 80 -68
-4 5 -5		43 14 94	. 33 -84	-1 2	190 182 50	-192 190 -26	-4 -5	112	-117 -117	1212	87 14	-81	-24	43 67	-77 -46	08		67 25 119 77
6 0 1	5	80 11 80	-94 11 81	-2 -3 -3	434 35 225	409 -21 227	0 11 1 -1	101 80 67	-91) -83 7 -67	-9 -4	80 76	-78 -78	-0 5	62 56	-95 -50 48	1 -1	10	101 89 104 81
-1 2 -2		110 34 242	112 89 208	4 -4 5	12 136	-139 17	-2-3	11	-7 24 7 74	-5 07 1	56 254 14	223 12	0 7 0 3	271 56	-82 -270 -48	-2 -3		1325 2225 113 -93
-3 -4		16 14 38	· -7 · 5 -26	-5 -6 0 2	176 98	-195 -94 127	-3 -4 -5	70 35	5 70 7 92 3. 14	-1 -2 -2	297 62 14	-256 -64 27	0 10 0 11	156 13. 119	-150 - 29 - 113	50.2		101 -30 1445 84 -84
-4-5		71 21	-59 3	-1	256 294 366	-262	0 12 1 -1	• 1	j _40 1. −1j 2. 4	-3 -3	76 198 84	-82 205 -77	0 12 0 13 0 0	11. 158 3 136	. 0 178 -146	-1 2		62 -66 13. 27 73
601	6	80 118 37	-71 -83	-2 -3	4.4 19 14	-470 -185	-22	522	5 -20 1 -60 5 -10	-5 5	119 56 3 76	9 110 5 43 - 43	-1 -2	25 134 104	-124 69	-2 -3		80 -55 121 -130 71 -63
-1		228 168	-213	بر ا	124 154 154	104 137 148	-5 -4 -5	30 4 4	0 -87 3 -46 3 37	-1 -1	1)1 243 162	-174 235 2 -164	-200	54 1. 25	. 67 . 32	0 2		12. 25 13. 22 15. 17
-34		76 143	72 125	-5	14	5 148 124 0 -70	Ć 15 1 -1	13 12 11	4 -175 4 -122 5 -150	-00	237 67	270 2 – 60 1 – 84	ية. د	1. 101 56	・ 54 - 55 シン	2:22		9. 11 1717 43 -35
455		101 80	103 -63 25	-1 -2	150 550 80	5 106 0 -521 0 65	-22	5	0 36 C7 5 119	4.5	50	5 59 0 -63 7 -102	-0 0 1 1	91 152 110	36 142 100	ة م 1		112 136 -145 1645
6 0 1	7	50 302	-57 -278	100	11	5 <u>-</u> 34 5 60 2 47	01-	5 2	0 117 6 52 5 22	0 9 1 -1) 15	5. 11 5. 7 5. 5	122	1+ 55 50	-18 -22 40	122		152 128 9. 43 2029
-1 2		87 156	289 156 102	4 -4	6 12	2 52 111 111	-1 2 -2	5	00 	۰.r.	19 21 12	510 L 71 2. 20	-5.	67 104	-57 101 -27	-3 -4 0 4		179 -191 113 -136 80 -75
-33-		181	196	-50 4	20 20	65 5 40	-3 0 19	د ا	0 57 57 57	-5	19	5. 15 113 7 -71	-5 -6	-94 -91 -62	100 53 -50	-1 0 5		43 -47 25 -48 13• -20
-4-52		127	-113	-1	13	5 -175 5 -370 5 -292	-1 -2 -3	49	3 50 5 31 2.	ć 10 1 -1		521 21 . 10	0 2 _1 _1	15 19	30 10 C	0 0 2	11	67 -33 43 52 87 114
61	8	62 250	-51	235	26	5 -245		6 10	0 -52 1 85 0 -85	14.10	50	0 -14 1 67 2, -28	-24%	17 45 14	-15	12		50 61 55 -27
2		259	267	- 4	2	5 2.	2	ĩ	3 . 3	4	1	5. 5	-5	10				

Thanks are due to Dr K. Sasvári for his valuable suggestions, to Mrs J. Matkó for measuring the intensities and to the team of the Centro di Calcolo Elettronico of the University of Parma for the calculations. A fellowship for four months was granted by the Italian Government.

gesting this work and for the preparing the crystals.

References

- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.

- BOOTH, A. D. (1948). Fourier Technique in X-Ray Organic Structure Analysis. Cambridge Univ. Press.
- BUERGER, M. J. (1959). Vector Space. p.85. New York: John Wiley.
- Bullough, R. K. & WHEATLEY, P. J. (1957). Acta Cryst. 10, 233.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 154.
- CRUICKSHANK, D. W. J. (1960). Acta Cryst. 13, 774.
- CRUICKSHANK, D. W. J. & JONES, D. W. (1963). Acta Cryst. 16, 877.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DAWSON, B. (1960). Acta Cryst. 13, 403.

- JEFFREY, G. A. & STADLER, H. P. (1951). J. Chem. Soc. p. 1467.
- JENSEN, L. H. (1962). Acta Cryst. 15, 433.
- KÁLMÁN, A. & ARGAY, GY. (1965). J. Sci. Instrum. 42, 483.
- KUCSMAN, Á. (1953). Acta Chim. Hung. 3, 47.
- KUCSMAN, Á. (1958). Dissertation, Budapest.
- KUCSMAN, Á. & KAPOVITS, I. (1964). Ann. Univ. Sci. (Budapest) Sectio Chim. 6, 161.
- KUCSMAN, Á., RUFF, F. & KAPOVITS, I. (1966). Tetrahedron, 22, 1575.
- KUCSMAN, Á., KÁLMÁN, A. & KAPOVITS, I. (1966). Acta Chim. Hung. To be published.
- NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.

- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, J. D. (1964). *Ric. Sci.* 34, 711.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, J. D. (1965). *Ric. Sci.* 35, 469, 477, 807.
- PINNOCK, P. R., TAYLOR, C. A. & LIPSON, H. (1956). Acta Cryst. 9, 173.
- SASVÁRI, K. & SÁNTA, F. (1964). Acta Chim. Hung. 40, 53.
- SCHULTZ, G. & KRESZE, G. (1963). Angew. Chem. 75, 1022.
- THOMAS, R., SHOEMAKER, C. B. & ERIKS, K. (1966). Acta Cryst. 21, 12.
- TRUTER, M. R. (1962a). J. Chem. Soc. p. 3393.
- TRUTER, M. R. (1962b). J. Chem. Soc. p. 3400.
- WHEATLEY, P. J. (1954). Acta Cryst. 7, 68.

Acta Cryst. (1967). 22, 507

Sodium Silicate Hydrates. III. The Crystal Structure of Na₂O.SiO₂.6H₂O and of the Isostructural Na₂O.GeO₂.6H₂O.

BY PETER B. JAMIESON* AND L. S. DENT GLASSER

Department of Chemistry, University of Aberdeen, Old Aberdeen, Scotland

(Received 17 August 1966)

A new sodium germanate hydrate, of oxide formula Na_2O . GeO_2 . $6H_2O$, has been prepared and found to be isostructural with the silicate Na_2O . SiO_2 . $6H_2O$. A complete structure analysis of both compounds has been carried out with three-dimensional data, with a view to extending the structural knowledge of sodium silicate hydrates, comparing interatomic bond distances and investigating the hydrogen bond systems. The silicon and germanium atoms are each surrounded tetrahedrally by four oxygen atoms. The tetrahedra being interconnected by fairly short hydrogen bonds. At least some of the hydrogen atoms seem to show a statistical distribution such that between two and three are associated with each siliconoxygen or germanium-oxygen tetrahedron. The sodium atoms are in approximately octahedral coordination, the octahedra alternately sharing faces and corners to form sheets.

Introduction

A previous structural study of Na₂O.SiO₂.9H₂O (Jamieson & Dent Glasser, 1966b) has shown that this compound contains $(H_2SiO_4)^{2-}$ groups. As a continuation of work in this field, the structure of the hexahydrate was next investigated, to find if the anions differed and to compare bond distances.

As silicon, sodium and oxygen do not differ greatly in scattering power, it was thought that if an isostructural germanate could be prepared the structure determination would be simplified, because of the presence of the comparatively heavy germanium atom. Prior to this study, only one sodium germanate hydrate was known – Na₂O. GeO₂. 7H₂O (Pugh, 1926; Nowotny & Szekely, 1952) – for which there is no corresponding silicate. Weight-loss determinations on Na₂O. GeO₂. 7H₂O (Schwarz & Heinrich, 1932) suggest the existence of a hexahydrate.

Experimental

The Na₂O.SiO₂. $6H_2O$ crystals used in this study were prepared as described in part I (Jamieson & Dent Glasser, 1966*a*). The crystals did not have very regular geometrical forms; the one selected for intensity measurement was not greater than 0.3 mm in its longest dimension.

For preparation of the germanate hydrate, mixtures of sodium hydroxide and germanium dioxide were first fused in a platinum crucible at 1250 °C. Na₂O:GeO₂ molar ratios were (i) 1.36:1 (ii) 1.57:1 and (iii) 1.84:1. The quenched material was divided into portions, a different volume of water being added to each. Many of the preparations yielded crystals of Na₂O.GeO₂. 7H₂O as identified by X-ray single-crystal and powder photographs and checked by chemical analysis. One solution [4.5 g of melt (ii) in 8 ml of water] which for the silicate series would be expected to yield Na₂O. SiO₂.9H₂O was seeded with crystals of this. In a short time, very large clear crystals had grown, but as soon as these were handled in any way, they turned cloudy,

^{*} Present address: Bell Telephone Laboratories Incorporated, Murray Hill, New Jersey, U.S.A.